Un superordenador resuelve la incógnita de las cáscaras de huevo

4_huevo.jpgPara uno de los padres de la idea, David Quigley, del Departamento de Física y Centro de Computación Científica de la Universidad de Warwick, la metadinámica es interesante porque “amplia las simulaciones convencionales de dinámica molecular (MD) y funciona particularmente bien para el muestreo de las transiciones entre estados desordenados y ordenados de la materia”.

Gracias a esta técnica, los científicos fueron capaces de crear simulaciones que muestran exactamente cómo la proteína, unida al carbonato de calcio, aflora usando dos tipos de residuos de arginina (arginina es uno de los 20 aminoácidos que forman parte de las proteínas), localizados en dos lazos de la proteína, creando un abrazo químico literal a las nanopartículas de carbonato de calcio.

Sujeta bajo esa forma, la OC-17 reacciona animando a las nanopartículas de carbonato de calcio a transformarse en “cristales de calcita” que forman el núcleo de pequeños cristales que pueden seguir creciendo por su cuenta. Sin embargo, los investigadores también advirtieron que ese abrazo químico no siempre funcionaba. A veces la proteína solo parecía separarse de la nanopartícula o ser desadsorbida (retirada de su superficie).

Por otra parte, el proceso no obtiene los mismos resultados con todos los tamaños de nanopartículas, como reconoce en el comunicado el profesor Mark Rodger, del Departamento de Química y el Centro de Computación Científica de la Universidad de Warwick: “Con las nanopartículas más grandes que hemos examinado encontramos que los puntos de unión para este abrazo químico eran los mismos que en las nanopartículas más pequeñas, pero la unión era mucho más débil. Además, en las simulaciones que realizamos, con las nanopartículas más pequeñas la proteína nunca fue desadsorbida, pero con las más grandes si sucedió. Sin embargo, en cada caso, la desadsorción ocurrió durante o después de la nucleación de la calcita”, es decir, en el comienzo de un cambio de estado.

Por lo tanto, los investigadores británicos han dado con un proceso que permite el reciclado altamente eficiente de la proteína ovocleidina OC-17. En efecto, esta actúa como un catalizador de la sujeción a partículas de carbonato cálcico para reactivar la formación de cristales, y luego se adormece cuando el núcleo de cristal es lo suficientemente grande para crecer por sus propios medios, facilitando la rápida creación de un día para otro de un cascarón de huevo. Con los ojos puestos en el futuro, los científicos creen que este avance ayudará a promover y controlar las formas artificiales de cristalización.

Fuente: Tendencias 21

0 0 votos
Article Rating
Subscribe
Notify of
1 Comment
Oldest
Newest Most Voted
Opiniones Inline
Ver todos los comentarios
Farangi
Farangi
13 years ago

Cuando consigan controlar bien este mecanismo empezaremos a tener nuevas coberturas y envoltorios completamente biodegradables, ligeros, impermeables.
Muy bueno.
El Maquero etíope

1
0
Me encantaría saber tu opinión, por favor, deja un comentariox
()
x